The Fitting length of finite soluble groups II

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Family of Dominant Fitting Classes of Finite Soluble Groups

In this paper a large family of dominant Fitting classes of finite soluble groups and the description of the corresponding injectors are obtained. Classical constructions of nilpotent and Lockett injectors as well as p-nilpotent injectors arise as particular cases. 1994 Mathematics subject classification (Amer. Math. Soc.): primary 20D10.

متن کامل

Computing automorphisms of finite soluble groups

There is a large collection of e ective algorithms for computing information about nite soluble groups. The success in computation with these groups is primarily due to a computationally convenient representation of them by means of (special forms of) power conjugate presentations. A notable omission from this collection of algorithms is an e ective algorithm for computing the automorphism grou...

متن کامل

intersections of prefrattini subgroups in finite soluble groups

‎let $h$ be a prefrattini subgroup of a soluble finite group $g$‎. ‎in the‎ ‎paper it is proved that there exist elements $x,y in g$ such that the equality‎ ‎$h cap h^x cap h^y = phi (g)$ holds‎.

متن کامل

Constructing Normalisers in Finite Soluble Groups

This paper describes algorithms for constructing a Hall n-subgroup H of a finite soluble group G and the normaliser No(H). If G has composition length n, then H and No(H ) can be constructed using O(n ~ log IGI) and O(n ~ log IGI) group multiplications, respectively. These algorithms may be used to construct other important subgroups such as Carter subgroups, system normalisers and relative sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2017

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2017.06.002